Classification of breast masses in mammograms using genetic programming and feature selection.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      Mammography is a widely used screening tool and is the gold standard for the early detection of breast cancer. The classification of breast masses into the benign and malignant categories is an important problem in the area of computer-aided diagnosis of breast cancer. A small dataset of 57 breast mass images, each with 22 features computed, was used in this investigation; the same dataset has been previously used in other studies. The extracted features relate to edge-sharpness, shape, and texture. The novelty of this paper is the adaptation and application of the classification technique called genetic programming (GP), which possesses feature selection implicitly. To refine the pool of features available to the GP classifier, we used feature-selection methods, including the introduction of three statistical measures--Student's t test, Kolmogorov-Smirnov test, and Kullback-Leibler divergence. Both the training and test accuracies obtained were high: above 99.5% for training and typically above 98% for test experiments. A leave-one-out experiment showed 97.3% success in the classification of benign masses and 95.0% success in the classification of malignant tumors. A shape feature known as fractional concavity was found to be the most important among those tested, since it was automatically selected by the GP classifier in almost every experiment. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Medical & Biological Engineering & Computing is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)