A novel finite element model-based navigation system-supported workflow for breast tumor excision.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      In the case of female breast cancer, a breast-conserving excision is often desirable. This surgery is based on preoperatively gathered MRI, mammography, and sonography images. These images are recorded in multiple patient positions, e. g., 2D mammography images in standing position with a compressed breast and 3D MRI images in prone position. In contrast, the surgery happens in supine or beach chair position. Due to these different perspectives and the flexible, thus challenging, breast tissue, the excision puts high demands on the physician. Therefore, this publication presents a novel eight-step excision support workflow that can be used to include information captured preoperatively through medical imaging based on a finite element (FE) model. In addition, an indoor positioning system is integrated in the workflow in order to track surgical devices and the sonography transducer during surgery. The preoperative part of the navigation system-supported workflow is outlined exemplarily based on first experimental results including 3D scans of a patient in different patient positions and her MRI images. Graphical Abstract Finite Element model based navigation system supported workflow for breast tumor excision is based on eight steps and allows inclusion of information from medical images recorded in multiple patient positions. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Medical & Biological Engineering & Computing is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)