Prenatal Organochlorine and Methylmercury Exposure and Memory and Learning in School-Age Children in Communities Near the New Bedford Harbor Superfund Site, Massachusetts.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Subject Terms:
    • Abstract:
      Background: Polychlorinated biphenyls (PCBs), organochlorine pesticides, and methylmercury (MeHg) are environmentally persistent with adverse effects on neurodevelopment. However, especially among populations with commonly experienced low levels of exposure, research on neurodevelopmental effects of these toxicants has produced conflicting results. Objectives: We assessed the association of low-level prenatal exposure to these contaminants with memory and learning. Methods: We studied 393 children, born between 1993 and 1998 to mothers residing near a PCB-contaminated harbor in New Bedford, Massachusetts. Cord serum PCB, DDE (dichlorodiphenyldichloroethylene), and maternal peripartum hair mercury (Hg) levels were measured to estimate prenatal exposure. Memory and learning were assessed at 8 years of age (range, 7–11 years) using the Wide Range Assessment of Memory and Learning (WRAML), age-standardized to a mean ± SD of 100 ± 15. Associations with each WRAML index—Visual Memory, Verbal Memory, and Learning—were examined with multivariable linear regression, controlling for potential confounders. Results: Although cord serum PCB levels were low (sum of four PCBs: mean, 0.3 ng/g serum; range, 0.01–4.4), hair Hg levels were typical of the U.S. fish-eating population (mean, 0.6 μg/g; range, 0.3–5.1). In multivariable models, each microgram per gram increase in hair Hg was associated with, on average, decrements of –2.8 on Visual Memory (95% CI: –5.0, –0.6, p = 0.01), –2.2 on Learning (95% CI: –4.6, 0.2, p = 0.08), and –1.7 on Verbal Memory (95% CI: –3.9, 0.6, p = 0.14). There were no significant adverse associations of PCBs or DDE with WRAML indices. Conclusions: These results support an adverse relationship between low-level prenatal MeHg exposure and childhood memory and learning, particularly visual memory. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Environmental Health Perspectives is the property of Superintendent of Documents and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)